The architecture of pre-mRNAs affects mechanisms of splice-site pairing.
نویسندگان
چکیده
The exon/intron architecture of genes determines whether components of the spliceosome recognize splice sites across the intron or across the exon. Using in vitro splicing assays, we demonstrate that splice-site recognition across introns ceases when intron size is between 200 and 250 nucleotides. Beyond this threshold, splice sites are recognized across the exon. Splice-site recognition across the intron is significantly more efficient than splice-site recognition across the exon, resulting in enhanced inclusion of exons with weak splice sites. Thus, intron size can profoundly influence the likelihood that an exon is constitutively or alternatively spliced. An EST-based alternative-splicing database was used to determine whether the exon/intron architecture influences the probability of alternative splicing in the Drosophila and human genomes. Drosophila exons flanked by long introns display an up to 90-fold-higher probability of being alternatively spliced compared with exons flanked by two short introns, demonstrating that the exon/intron architecture in Drosophila is a major determinant in governing the frequency of alternative splicing. Exon skipping is also more likely to occur when exons are flanked by long introns in the human genome. Interestingly, experimental and computational analyses show that the length of the upstream intron is more influential in inducing alternative splicing than is the length of the downstream intron. We conclude that the size and location of the flanking introns control the mechanism of splice-site recognition and influence the frequency and the type of alternative splicing that a pre-mRNA transcript undergoes.
منابع مشابه
Splice site choice and splicing efficiency are positively influenced by pre-mRNA intramolecular base pairing in yeast.
Many of the mechanisms that govern splice site selection and splice site partner assignment during pre-mRNA splicing are obscure. To address this problem, we analyzed the splicing of transcripts containing chimeric introns or splice site duplications derived from two natural yeast genes. Our experiments indicate that there are strong context effects that influence splicing efficiency and relati...
متن کاملExon mutations uncouple 5' splice site selection from U1 snRNA pairing.
It has previously been shown that a mutation of yeast 5' splice junctions at position 5 (GUAUGU) causes aberrant pre-mRNA cleavages near the correct 5' splice site. We show here that the addition of exon mutations to an aberrant cleavage site region transforms it into a functional 5' splice site both in vivo and in vitro. The aberrant mRNAs are translated in vivo. The results suggest that the h...
متن کاملModulation of exon skipping by high-affinity hnRNP A1-binding sites and by intron elements that repress splice site utilization.
The RNA-binding protein hnRNP A1 is a splicing regulator produced by exclusion of alternative exon 7B from the A1 pre-mRNA. Each intron flanking exon 7B contains a high-affinity A1-binding site. The A1-binding elements promote exon skipping in vivo, activate distal 5' splice site selection in vitro and improve the responsiveness of pre-mRNAs to increases in the concentration of A1. Whereas the ...
متن کاملExtended base pair complementarity between U 1 snRNA and the 5 0 splice site does not inhibit splicing in higher eukaryotes , but rather increases 5 0 splice site recognition
Spliceosome formation is initiated by the recognition of the 50 splice site through formation of an RNA duplex between the 50 splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 50 splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 50 splice site sequence for base pairing...
متن کاملExtended base pair complementarity between U1 snRNA and the 5′ splice site does not inhibit splicing in higher eukaryotes, but rather increases 5′ splice site recognition
Spliceosome formation is initiated by the recognition of the 5' splice site through formation of an RNA duplex between the 5' splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5' splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5' splice site sequence for base pairing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 45 شماره
صفحات -
تاریخ انتشار 2005